

Your local Blue Cross Blue Shield

Caring with Algorithms

Jon Wayland Director of Data Science Florida Blue

Jonathan.Wayland@bcbsfl.com https://www.linkedin.com/in/jonwayland

Advanced Care Planning

- Costs are 3x more in the final year of life than in the year prior
- EOL costs are 46x higher than the rest of the population

□ Market need identified for Advanced Care

- Hospice vs. hospital deaths proxies financial opportunity
- Cross-functional solution designed
 ✓ Identification
 - ✓ Advanced Directives
 - Vendor offers identification in bundle
 - ✓ Palliative Care Delivery

Unsexy Part of Machine Learning

Building the training data

Identifying Mortality

- Reported death dates (historically underreported)
- Vendor return data
- Discharge status codes

Code	Description
20	Expired -used only when the patient dies
40	Expired at home (Hospice claims only) used only on Medicare and TRICARE claims for hospice care
41	Expired in a medical facility (hospital, SNF, Intermediate Care Facility, or free standing hospice) for hospice use onl
42	Expired - place unknown -this is used only on Medicare and TRICARE claims for Hospice only

Removing • Clinical Input Acute • Research Events • Cause of Death Analysis

Myocardial Infarction	Glioblastoma	Ovarian cancer
Chronic Heart Failure	Pancreatic cancer (all types)	Non lymphoma lymph node cancer
Peripheral Vascular Disease	Mesothelioma	Cancer of the head, face, and neck
Dementia	Transmissible spongiform encephalopathies	Heart cancer
Chronic Obstructive Pulmonary Disease	Lung cancer (all types)	Fibrodysplasia Ossificans Progressiva
Peptic Ulcer Disease	Cirrhosis	Gallbladder cancer
Mild Liver Disease	End Stage Renal Disease	Esophageal cancer
Moderate to Severe Liver Disease	Liver and bile duct cancer (Cholangiocarcinoma)	Cardiac Arrest (Previous)
Diabetes	Acute respiratory failure with hypoxia	Leukemia, acute myelomonocytic
HIV / AIDS	Ischemic Heart Disease	Uterine cancer
Lymphoma	Pulmonary fibrosis	Stomach cancer
Leukemia	Amyotrophic lateral sclerosis (ALS)	Hypopharynx cancer
Diffuse intrinsic pontine glioma (brain stem)	Brain cancer	Ventricular arrhythmias

Unsexy Part of Machine Learning

Building the training data (Continued)

Structuring the Outcome

- Event = 1 if member passes away
- Event = o if member survives

Reference Month: Month of Death for those who passed away and Randomly Selected Month for those who survived

Example:

ID	Status	Month w/ Qualifying Condition
123	Survived	201702
123	Survived	201703
123	Survived	201704
123	Survived	201705
321	Survived	201610
321	Survived	201611
321	Survived	201612

ID	Reference Month
123	201803
321	201709

Note: 1 year added to the randomly selected month w/ potentially terminal condition to represent the prediction window

Feature Engineering

Enrollment

Contract Size Age Gender Tenure w/ Florida Blue Product Selection

SDoH

Area Deprivation (Block Level) Social Vulnerability (Zip Code) CDC Local (Zip Code)

Pharmacy Claims

Script Counts Script Costs Utilization by Therapeutic Classes

Medical Claims

Claim Counts Costs Procedures Diagnoses Chronic & Disabling Conditions High Death Rate Diseases Cancer Utilization by Provider Specialty Charlson Comorbidity Index Alcohol, Drug Dependence Smoking Obesity Diagnosis Embeddings

Final Data Preparation

500 Features

Status	Age	Gender	•••	Embedding 1	
Survived	42	М		-0.234	
Survived	46	F		0.563	
Expired	55	М		1.891	

Training, Validation, Testing

The Sexy Part of Machine Learning

Algorithm Selection

- Logistic Regression
- Penalized Logistic Regression
 - Ridge, LASSO, and Elastic Net ----
- Decision Tree ----
- Random Forest
- Support Vector Machines
- Naïve Bayes
- Gradient Boosting
- XGBoost

MidJourney bringing "XGBoost" to life

10-Fold Cross Validation

Validation Data

15%

Hyperparameter Tuning

Learning rate Percent of variables to consider Ratio of the training instances Max depth of the tree Number of iterations Min loss reduction required for new partitions Min sum of instance weight

Searching over 360 hyperparameter combinations

Performance on Testing Data

Precision on Top 0.2% = 35% AUC = 0.90

Interpretations:

Random Selection of 1,000 2 Passing Away

Model Selection of 1,000 350 Passing Away

If both a surviving and expired member were randomly selected, then the probability that the model ranked the expired member higher than the surviving member is 90% (AUC)

The XGBoost Model

Gain Importance Definition: <u>https://xgboost.readthedocs.io/en/latest/tutorials/model.html</u>

Defending XGBoost

To Non-Technical Audiences

XGB Model

traced back

Splits are made on the full training dataset to reduce error

Flipping the "On" Switch

So What?

Recall

- Financial Opportunity -----•
- ٠
- These are real people -----

After 2 Years of Experience

- Savings targets hit year-over-year
- Highest engagement rate in our vendor's book of business

Jonathan.Wayland@bcbsfl.com JonWayland47@gmail.com

https://jonwayland.com

Jon Wayland Data Science Director @ Florida Blue

https://www.linkedin.com/in/jonwayland